Copied to
clipboard

G = C24.4D10order 320 = 26·5

4th non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.4D10, C10.72(C4×D4), (C2×C20).248D4, C23.D515C4, C22.96(D4×D5), C23.16(C4×D5), (C22×C4).25D10, C10.83(C4⋊D4), (C2×Dic5).228D4, C2.2(Dic5⋊D4), C2.1(C20.17D4), C10.37(C4.4D4), C22.51(C4○D20), (C23×C10).28C22, C56(C24.C22), C23.278(C22×D5), C10.10C4211C2, C10.46(C42⋊C2), C10.12(C422C2), C2.25(Dic54D4), C2.5(D10.12D4), C22.44(D42D5), (C22×C10).320C23, (C22×C20).342C22, C2.6(C23.D10), C10.28(C22.D4), (C22×Dic5).36C22, C2.14(C23.11D10), C2.8(C4×C5⋊D4), (C2×C4×Dic5)⋊22C2, (C2×C22⋊C4).7D5, C22.124(C2×C4×D5), (C2×C10).430(C2×D4), (C2×C4).98(C5⋊D4), C22.48(C2×C5⋊D4), (C2×C23.D5).7C2, (C2×C10).75(C4○D4), (C2×C10.D4)⋊32C2, (C10×C22⋊C4).24C2, (C2×C10).207(C22×C4), (C22×C10).116(C2×C4), (C2×Dic5).104(C2×C4), SmallGroup(320,572)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C24.4D10
C1C5C10C2×C10C22×C10C22×Dic5C2×C4×Dic5 — C24.4D10
C5C2×C10 — C24.4D10
C1C23C2×C22⋊C4

Generators and relations for C24.4D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=b, f2=db=bd, ab=ba, eae-1=ac=ca, ad=da, faf-1=abcd, bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e9 >

Subgroups: 590 in 190 conjugacy classes, 69 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, C2×C10, C2×C10, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C24.C22, C4×Dic5, C10.D4, C23.D5, C23.D5, C5×C22⋊C4, C22×Dic5, C22×C20, C23×C10, C10.10C42, C2×C4×Dic5, C2×C10.D4, C2×C23.D5, C10×C22⋊C4, C24.4D10
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, D10, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C4.4D4, C422C2, C4×D5, C5⋊D4, C22×D5, C24.C22, C2×C4×D5, C4○D20, D4×D5, D42D5, C2×C5⋊D4, C23.11D10, C23.D10, Dic54D4, D10.12D4, C4×C5⋊D4, C20.17D4, Dic5⋊D4, C24.4D10

Smallest permutation representation of C24.4D10
On 160 points
Generators in S160
(2 39)(4 21)(6 23)(8 25)(10 27)(12 29)(14 31)(16 33)(18 35)(20 37)(41 96)(42 127)(43 98)(44 129)(45 100)(46 131)(47 82)(48 133)(49 84)(50 135)(51 86)(52 137)(53 88)(54 139)(55 90)(56 121)(57 92)(58 123)(59 94)(60 125)(61 87)(62 138)(63 89)(64 140)(65 91)(66 122)(67 93)(68 124)(69 95)(70 126)(71 97)(72 128)(73 99)(74 130)(75 81)(76 132)(77 83)(78 134)(79 85)(80 136)(102 151)(104 153)(106 155)(108 157)(110 159)(112 141)(114 143)(116 145)(118 147)(120 149)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 38)(2 39)(3 40)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(18 35)(19 36)(20 37)(41 70)(42 71)(43 72)(44 73)(45 74)(46 75)(47 76)(48 77)(49 78)(50 79)(51 80)(52 61)(53 62)(54 63)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(81 131)(82 132)(83 133)(84 134)(85 135)(86 136)(87 137)(88 138)(89 139)(90 140)(91 121)(92 122)(93 123)(94 124)(95 125)(96 126)(97 127)(98 128)(99 129)(100 130)(101 150)(102 151)(103 152)(104 153)(105 154)(106 155)(107 156)(108 157)(109 158)(110 159)(111 160)(112 141)(113 142)(114 143)(115 144)(116 145)(117 146)(118 147)(119 148)(120 149)
(1 156)(2 157)(3 158)(4 159)(5 160)(6 141)(7 142)(8 143)(9 144)(10 145)(11 146)(12 147)(13 148)(14 149)(15 150)(16 151)(17 152)(18 153)(19 154)(20 155)(21 110)(22 111)(23 112)(24 113)(25 114)(26 115)(27 116)(28 117)(29 118)(30 119)(31 120)(32 101)(33 102)(34 103)(35 104)(36 105)(37 106)(38 107)(39 108)(40 109)(41 86)(42 87)(43 88)(44 89)(45 90)(46 91)(47 92)(48 93)(49 94)(50 95)(51 96)(52 97)(53 98)(54 99)(55 100)(56 81)(57 82)(58 83)(59 84)(60 85)(61 127)(62 128)(63 129)(64 130)(65 131)(66 132)(67 133)(68 134)(69 135)(70 136)(71 137)(72 138)(73 139)(74 140)(75 121)(76 122)(77 123)(78 124)(79 125)(80 126)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 83 146 48)(2 92 147 57)(3 81 148 46)(4 90 149 55)(5 99 150 44)(6 88 151 53)(7 97 152 42)(8 86 153 51)(9 95 154 60)(10 84 155 49)(11 93 156 58)(12 82 157 47)(13 91 158 56)(14 100 159 45)(15 89 160 54)(16 98 141 43)(17 87 142 52)(18 96 143 41)(19 85 144 50)(20 94 145 59)(21 140 120 64)(22 129 101 73)(23 138 102 62)(24 127 103 71)(25 136 104 80)(26 125 105 69)(27 134 106 78)(28 123 107 67)(29 132 108 76)(30 121 109 65)(31 130 110 74)(32 139 111 63)(33 128 112 72)(34 137 113 61)(35 126 114 70)(36 135 115 79)(37 124 116 68)(38 133 117 77)(39 122 118 66)(40 131 119 75)

G:=sub<Sym(160)| (2,39)(4,21)(6,23)(8,25)(10,27)(12,29)(14,31)(16,33)(18,35)(20,37)(41,96)(42,127)(43,98)(44,129)(45,100)(46,131)(47,82)(48,133)(49,84)(50,135)(51,86)(52,137)(53,88)(54,139)(55,90)(56,121)(57,92)(58,123)(59,94)(60,125)(61,87)(62,138)(63,89)(64,140)(65,91)(66,122)(67,93)(68,124)(69,95)(70,126)(71,97)(72,128)(73,99)(74,130)(75,81)(76,132)(77,83)(78,134)(79,85)(80,136)(102,151)(104,153)(106,155)(108,157)(110,159)(112,141)(114,143)(116,145)(118,147)(120,149), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,38)(2,39)(3,40)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79)(51,80)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(81,131)(82,132)(83,133)(84,134)(85,135)(86,136)(87,137)(88,138)(89,139)(90,140)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,127)(98,128)(99,129)(100,130)(101,150)(102,151)(103,152)(104,153)(105,154)(106,155)(107,156)(108,157)(109,158)(110,159)(111,160)(112,141)(113,142)(114,143)(115,144)(116,145)(117,146)(118,147)(119,148)(120,149), (1,156)(2,157)(3,158)(4,159)(5,160)(6,141)(7,142)(8,143)(9,144)(10,145)(11,146)(12,147)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,110)(22,111)(23,112)(24,113)(25,114)(26,115)(27,116)(28,117)(29,118)(30,119)(31,120)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)(48,93)(49,94)(50,95)(51,96)(52,97)(53,98)(54,99)(55,100)(56,81)(57,82)(58,83)(59,84)(60,85)(61,127)(62,128)(63,129)(64,130)(65,131)(66,132)(67,133)(68,134)(69,135)(70,136)(71,137)(72,138)(73,139)(74,140)(75,121)(76,122)(77,123)(78,124)(79,125)(80,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,83,146,48)(2,92,147,57)(3,81,148,46)(4,90,149,55)(5,99,150,44)(6,88,151,53)(7,97,152,42)(8,86,153,51)(9,95,154,60)(10,84,155,49)(11,93,156,58)(12,82,157,47)(13,91,158,56)(14,100,159,45)(15,89,160,54)(16,98,141,43)(17,87,142,52)(18,96,143,41)(19,85,144,50)(20,94,145,59)(21,140,120,64)(22,129,101,73)(23,138,102,62)(24,127,103,71)(25,136,104,80)(26,125,105,69)(27,134,106,78)(28,123,107,67)(29,132,108,76)(30,121,109,65)(31,130,110,74)(32,139,111,63)(33,128,112,72)(34,137,113,61)(35,126,114,70)(36,135,115,79)(37,124,116,68)(38,133,117,77)(39,122,118,66)(40,131,119,75)>;

G:=Group( (2,39)(4,21)(6,23)(8,25)(10,27)(12,29)(14,31)(16,33)(18,35)(20,37)(41,96)(42,127)(43,98)(44,129)(45,100)(46,131)(47,82)(48,133)(49,84)(50,135)(51,86)(52,137)(53,88)(54,139)(55,90)(56,121)(57,92)(58,123)(59,94)(60,125)(61,87)(62,138)(63,89)(64,140)(65,91)(66,122)(67,93)(68,124)(69,95)(70,126)(71,97)(72,128)(73,99)(74,130)(75,81)(76,132)(77,83)(78,134)(79,85)(80,136)(102,151)(104,153)(106,155)(108,157)(110,159)(112,141)(114,143)(116,145)(118,147)(120,149), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,38)(2,39)(3,40)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79)(51,80)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(81,131)(82,132)(83,133)(84,134)(85,135)(86,136)(87,137)(88,138)(89,139)(90,140)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,127)(98,128)(99,129)(100,130)(101,150)(102,151)(103,152)(104,153)(105,154)(106,155)(107,156)(108,157)(109,158)(110,159)(111,160)(112,141)(113,142)(114,143)(115,144)(116,145)(117,146)(118,147)(119,148)(120,149), (1,156)(2,157)(3,158)(4,159)(5,160)(6,141)(7,142)(8,143)(9,144)(10,145)(11,146)(12,147)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,110)(22,111)(23,112)(24,113)(25,114)(26,115)(27,116)(28,117)(29,118)(30,119)(31,120)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)(48,93)(49,94)(50,95)(51,96)(52,97)(53,98)(54,99)(55,100)(56,81)(57,82)(58,83)(59,84)(60,85)(61,127)(62,128)(63,129)(64,130)(65,131)(66,132)(67,133)(68,134)(69,135)(70,136)(71,137)(72,138)(73,139)(74,140)(75,121)(76,122)(77,123)(78,124)(79,125)(80,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,83,146,48)(2,92,147,57)(3,81,148,46)(4,90,149,55)(5,99,150,44)(6,88,151,53)(7,97,152,42)(8,86,153,51)(9,95,154,60)(10,84,155,49)(11,93,156,58)(12,82,157,47)(13,91,158,56)(14,100,159,45)(15,89,160,54)(16,98,141,43)(17,87,142,52)(18,96,143,41)(19,85,144,50)(20,94,145,59)(21,140,120,64)(22,129,101,73)(23,138,102,62)(24,127,103,71)(25,136,104,80)(26,125,105,69)(27,134,106,78)(28,123,107,67)(29,132,108,76)(30,121,109,65)(31,130,110,74)(32,139,111,63)(33,128,112,72)(34,137,113,61)(35,126,114,70)(36,135,115,79)(37,124,116,68)(38,133,117,77)(39,122,118,66)(40,131,119,75) );

G=PermutationGroup([[(2,39),(4,21),(6,23),(8,25),(10,27),(12,29),(14,31),(16,33),(18,35),(20,37),(41,96),(42,127),(43,98),(44,129),(45,100),(46,131),(47,82),(48,133),(49,84),(50,135),(51,86),(52,137),(53,88),(54,139),(55,90),(56,121),(57,92),(58,123),(59,94),(60,125),(61,87),(62,138),(63,89),(64,140),(65,91),(66,122),(67,93),(68,124),(69,95),(70,126),(71,97),(72,128),(73,99),(74,130),(75,81),(76,132),(77,83),(78,134),(79,85),(80,136),(102,151),(104,153),(106,155),(108,157),(110,159),(112,141),(114,143),(116,145),(118,147),(120,149)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,38),(2,39),(3,40),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(18,35),(19,36),(20,37),(41,70),(42,71),(43,72),(44,73),(45,74),(46,75),(47,76),(48,77),(49,78),(50,79),(51,80),(52,61),(53,62),(54,63),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(81,131),(82,132),(83,133),(84,134),(85,135),(86,136),(87,137),(88,138),(89,139),(90,140),(91,121),(92,122),(93,123),(94,124),(95,125),(96,126),(97,127),(98,128),(99,129),(100,130),(101,150),(102,151),(103,152),(104,153),(105,154),(106,155),(107,156),(108,157),(109,158),(110,159),(111,160),(112,141),(113,142),(114,143),(115,144),(116,145),(117,146),(118,147),(119,148),(120,149)], [(1,156),(2,157),(3,158),(4,159),(5,160),(6,141),(7,142),(8,143),(9,144),(10,145),(11,146),(12,147),(13,148),(14,149),(15,150),(16,151),(17,152),(18,153),(19,154),(20,155),(21,110),(22,111),(23,112),(24,113),(25,114),(26,115),(27,116),(28,117),(29,118),(30,119),(31,120),(32,101),(33,102),(34,103),(35,104),(36,105),(37,106),(38,107),(39,108),(40,109),(41,86),(42,87),(43,88),(44,89),(45,90),(46,91),(47,92),(48,93),(49,94),(50,95),(51,96),(52,97),(53,98),(54,99),(55,100),(56,81),(57,82),(58,83),(59,84),(60,85),(61,127),(62,128),(63,129),(64,130),(65,131),(66,132),(67,133),(68,134),(69,135),(70,136),(71,137),(72,138),(73,139),(74,140),(75,121),(76,122),(77,123),(78,124),(79,125),(80,126)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,83,146,48),(2,92,147,57),(3,81,148,46),(4,90,149,55),(5,99,150,44),(6,88,151,53),(7,97,152,42),(8,86,153,51),(9,95,154,60),(10,84,155,49),(11,93,156,58),(12,82,157,47),(13,91,158,56),(14,100,159,45),(15,89,160,54),(16,98,141,43),(17,87,142,52),(18,96,143,41),(19,85,144,50),(20,94,145,59),(21,140,120,64),(22,129,101,73),(23,138,102,62),(24,127,103,71),(25,136,104,80),(26,125,105,69),(27,134,106,78),(28,123,107,67),(29,132,108,76),(30,121,109,65),(31,130,110,74),(32,139,111,63),(33,128,112,72),(34,137,113,61),(35,126,114,70),(36,135,115,79),(37,124,116,68),(38,133,117,77),(39,122,118,66),(40,131,119,75)]])

68 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E4F4G···4N4O4P4Q4R5A5B10A···10N10O···10V20A···20P
order12···2224444444···444445510···1010···1020···20
size11···14422224410···1020202020222···24···44···4

68 irreducible representations

dim111111122222222244
type++++++++++++-
imageC1C2C2C2C2C2C4D4D4D5C4○D4D10D10C5⋊D4C4×D5C4○D20D4×D5D42D5
kernelC24.4D10C10.10C42C2×C4×Dic5C2×C10.D4C2×C23.D5C10×C22⋊C4C23.D5C2×Dic5C2×C20C2×C22⋊C4C2×C10C22×C4C24C2×C4C23C22C22C22
# reps121121822284288826

Matrix representation of C24.4D10 in GL6(𝔽41)

100000
0400000
001000
0004000
000010
00002140
,
4000000
0400000
0040000
0004000
0000400
0000040
,
4000000
0400000
0040000
0004000
000010
000001
,
100000
010000
0040000
0004000
000010
000001
,
010000
4000000
000100
0040000
0000360
00001133
,
900000
090000
0003200
009000
0000196
0000822

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,21,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,36,11,0,0,0,0,0,33],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,9,0,0,0,0,32,0,0,0,0,0,0,0,19,8,0,0,0,0,6,22] >;

C24.4D10 in GAP, Magma, Sage, TeX

C_2^4._4D_{10}
% in TeX

G:=Group("C2^4.4D10");
// GroupNames label

G:=SmallGroup(320,572);
// by ID

G=gap.SmallGroup(320,572);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,64,926,219,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=b,f^2=d*b=b*d,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f^-1=a*b*c*d,b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^9>;
// generators/relations

׿
×
𝔽